1. Two bodies are suspended by means of a string that passes over a weightless, frictionless pulley. If one of the bodies has a mass of 18 kg and the other 14 kg , what is the acceleration of the system and the tension in the string? $\left(1.23 \mathrm{~m} / \mathrm{s}^{2}[\mathrm{cw}], T=154 \mathrm{~N}\right)$
2. A cord passing over a pulley has a 8 kg mass tied on one end and a 9 kg mass on the other. Determine the acceleration of the system and the tension in the cord. $\left(0.58 \mathrm{~m} / \mathrm{s}^{2}[\mathrm{cw}]\right.$, $T=83 N$)
3. A string passing over a frictionless pulley has a 4 kg object tied on one end and a 12 kg object on the other end.
a. Calculate the acceleration and the tension in the string. $\left(4.9 \mathrm{~m} / \mathrm{s}^{2}[\mathrm{cw}], T=58.8 \mathrm{~N}\right)$
b. What will be its velocity after $2 s ?(9.8 \mathrm{~m} / \mathrm{s}[\mathrm{cw}])$
4. A 20 kg object rests on a smooth table. It is fastened by a string that passes over a frictionless pulley to a mass of 3 kg that hangs freely. Find the acceleration of the system and the tension in the string. $\left(1.28 \mathrm{~m} / \mathrm{s}^{2}[\mathrm{cw}], T=25.6 \mathrm{~N}\right)$
5. A 6 kg block rests on a smooth table. A string passes over a frictionless pulley and a 3 kg mass is attached to its end.
a. Determine the acceleration of the system and the tension in the string. ($3.27 \mathrm{~m} / \mathrm{s}^{2}[\mathrm{cw}]$, $T=19.6 \mathrm{~N}$)
b. What will be the velocity of the block after $1.5 s ?(4.9 \mathrm{~m} / \mathrm{s}[\mathrm{cw}])$
6. A 100 kg object is moved along a horizontal surface by a cord parallel to the surface and running over a frictionless pulley, the other end of the cord supporting a mass of 25 kg . What is the acceleration of the objects and the tension in the cord if the friction on the surface is $40 \mathrm{~N} ?\left(1.64 \mathrm{~m} / \mathrm{s}^{2}[\mathrm{cw}], T=204 \mathrm{~N}\right)$

Calculate the acceleration and the tensions (\#7 \& \#8 only) in the following diagrams.
7.

$\mu=0.12$
($5.97 \mathrm{~m} / \mathrm{s}^{2}[$ right $], T=35.7 \mathrm{~N}$)
8.

($8.66 \mathrm{~m} / \mathrm{s}^{2}[\mathrm{right}], T=55.6 \mathrm{~N}, 88.9 \mathrm{~N}$)
9.

$\left(10.9 \mathrm{~m} / \mathrm{s}^{2}[r i g h t]\right)$
10.

($5.69 \mathrm{~m} / \mathrm{s}^{2}[$ right $\left.]\right)$

There are times when being a whiz of physics can be a definite drawback.

